Identifying etiologic agents of diarrhea through active laboratory-based surveillance in Dadaab, Kenya, 2011 - 2013

> Fredrick O. Oyier Medical Laboratory Scientist Kenya Medical Research Institute

2nd African Society for Laboratory Medicine Conference December 1 – 4, 2014

Background

Diarrhea causes high morbidity and mortality in refugee camps

- Responsible for 10% morbidity and 7% mortality in children <5 years¹
- In Kenya diarrheal disease kills an estimated 32,000 children <5 years annually²

Antibiotics are useful for treatment of severe diarrheal illnesses

- Shortens duration of illness
- Reduces bacterial shedding in stool thus decreasing transmission, morbidity and mortality

² Pauline Irungu, Kenya Policy Change on Zinc Improves Access to Zinc to tackle diarrhea disease. https://www.deteatdd.org/blog/kenyapolicy-change-zinc improves-access-zinc-tackle-diarrhea-disease.

¹ Hershley et al. Incidence and risk factors for Malaria, Pneumonia and diarrhea in children under 5 in UNHCR refugee camps. *Conflict and Health*: 2011,

Diarrheal Surveillance Objectives

To determine the relative contribution of selected bacterial and viral pathogens to the burden of diarrhea

To determine the antibiotic resistance pattern for bacterial isolates from patients with diarrhea

Methods: Location of Dadaab Refugee Camps

 Hosts the largest single group of refugee population
Dadaab, Kenya – 5 camp complex with ~ 450,000 registered refugees

Methods: Surveillance Population and Site

Enhanced passive surveillance of diarrhea among residents of Dadaab refugee camp

Prospectively enrolled participants with diarrhea

- Initially at Hagadera refugee camp from January 1, 2011 through to December 31, 2013
- Included additional camps (Ifo, Ifo 2, Dagahaley, Kambioss) and 2 cross border towns (Liboi and Dhoobley)

Description of Surveillance System

Case definitions

- Diarrhea: Any person presenting with \geq 3 loose stools in 24 hours
- Suspected rotavirus: A child <5 years old presenting with diarrhea</p>

Exclusion criteria

- Newborns who have not been discharged from the hospital
- Infants <1 week old</p>
- Patients who do not give informed consent

Methods

Data Collection

- Trained surveillance clerks identified and enrolled participants with diarrhea
- Informed consent obtained
- Standardized structured questionnaire administered

Sample Collection

- Whole stool or rectal swabs placed in Cary Blair transport media
- Transported to the lab within 2-4 hours
- Temperature 3^o 8^oC

Methods

Specimen testing

- Cultures done using standard microbiological techniques
 - Shigella, Salmonella, Vibrio, Aeromonas, Campylobacter spp etc
- Antimicrobial susceptibility testing done using Kirby-Bauer disc diffusion method
- Rotavirus : Premier Rotaclone[®] ELISA

Data management

- Data entered and stored into a Microsoft Access 2010 database
- Analysis was done using Microsoft Excel and SAS version 9.3
- Discrepancies were resolved through verification and validation of data

Specimen Flow Chart and Results

Demographic Characteristics of Patients with diarrhea in Dadaab Refugee Camp, 2011-2013

Characteristics	All ages	Children <5 years	
Age Median (range)	24 months (range=1 month – 95 years)	12 months (range=1 – 57 months)	
Gender Male	1,372 (50.1%)	914 (53.3%)	
Number of days of illness before visiting health facility Median (Range)	2 (0 – 12) days	2 (0 – 12) days	

Distribution of cases with diarrhea by age group, January 1, 2011- December 31, 2013

Antimicrobial Resistance Profiles of Shigella and Vibrio isolates

Shigella spp (N=431)				
Antibiotic	Resistant, n(%)	Intermediate, n(%)	Sensitive, n(%)	
Tetracycline, 30µg	393 (91.2)	4 (0.9)	34 (7.9)	
Cotrimoxazole, 25µg	376 (87.2)	3 (0.7)	52 (12.1)	
Ampicillin, 10µg	346 (80.3)	4 (0.9)	81 (18.8)	
Nalidixic-acid, 30µg	54 (12.5)	10 (2.3)	367 (85.2)	
Ceftriaxone, 30µg	8 (1.9)	10 (2.3)	413 (95.8)	
Ciprofloxacin, 5µg	6 (1.4)	0 (0.0)	425 (98.6)	
Vibrio cholerae O1 (N=154)				
Antibiotic	Resistant, n(%)	Intermediate, n(%)	Sensitive, n(%)	
Cotrimoxazole, 25µg	151 (98.1)	0 (0.0)	3 (1.9)	
Furazolidone, 100µg	104 (67.5)	0 (0.0)	50 (32.5)	
Erythromycin, 15µg	45 (29.0)	94(61.0)	15 (10.0)	
Tetracycline, 30µg	3 (1.9)	0 (0.0)	151 (98.1)	
Chloramphenicol, 30µg	0 (0.0)	29 (18.8)	125 (81.2)	
Ciprofloxacin, 5µg	0 (0.0)	0 (0.0)	154 (100.0)	

Conclusion

Bacterial enteropathogens

- Bacterial causes were identified in 26.7% of all diarrheal cases
- The most common bacterial enteropathogens isolated were
 - Shigella mostly serotype S. flexneri
 - Cholera mostly V. cholerae O1 serotype Inaba

Diarrhea causes in children <5 years of age</p>

- Rotavirus: 21.6%
- Bacterial enteropathogens: 17.3%
- Co-infection with bacteria and rotavirus: 2.7%

Antibiotic resistance

- Shigella spp: showed high resistance to commonly used antibiotics
 - Effective antibiotics include ciprofloxacin and ceftriaxone
- V. cholerae O1
 - Susceptible to 1st line antibiotics used in adults
 - Resistant to 1st line antibiotics used in children

Recommendation

Surveillance data is sensitive indicator of pathogens with potential for explosive outbreaks in refugee camps

- Early detection of
 - V. cholerae O1 i.e., serotype Inaba, Ogawa
 - Shigella spp. i.e., S. dysenteriae, S. flexneri, S. boydii, S. sonnei and unspeciated Shigella

Surveillance data can be used as baseline to inform diarrhea prevention and control strategies

 Measuring the effectiveness of the rotavirus vaccine in Dadaab set to role out this month

Monitoring of antibiotic resistance is necessary

- Guide rational use of antibiotic in patient management
- Detects changes in local antimicrobial resistance patterns

Acknowledgements

Refugees in Dadaab complex

Kenya Medical Research Institute

Shafe A. Mowlid, Steve B. Ochieng, Ahmed Unshur, Walter Ochieng

Centers for Disease Control and Prevention

 Rachel Eidex, Jamal Ahmed, Robert Breiman, Joseph Oundo, Kariuki Njenga, Mark Katz, Michelle Weinberg, Abdirahman Sh Mahamud, Charles I. Okello, Raymond Nyoka, Barry Fields, Joel M. Montgomery, Maurice Ope, Nina Marano

Kenya Ministry of Health

Phillip Muthoka, Rosalia Kalani

International Rescue Committee, Kenya

Milhia Abdul Kader, Gitau Mburu, James Ndirangu, Vincent Kahi, Willy Kabugi

United Nations High Commissioner for Refugees

Burton Wagacha, Isa Musulo, Bosco Muhindo

Thank you for your attention!

Questions?

For more information please contact:

KEMRI CGHR P.O. Box 1578 Kisumu, Kenya E-mail: info@kemricdc.org

254.572.022.929 254.720.374.226 254.734.512.232

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the KEMRI Center for Global Health Research.

KEMRI Centre for Global Health Research