Stronger health systems. Greater health impact.

Use of Routine Clinical Laboratory Data to Determine Disease Prevalence and Diagnostics Services Provided in Kenya

Mwihia J¹, MutureJ¹ Amayo A², Wachira J², Mwau M², Mwangi J²,

4/12/2014

ASLM 2014 Cape Town, SA

¹Ministry of Health, Kenya.

² Management Sciences for Health (MSH)

Presentation Outline

- Background and Objective
- Methods

Results

Limitations and Conclusions

Background

- Disease surveillance an important function of health laboratories
- In established health systems, clinical laboratory results used as early warning systems for outbreaks
- Laboratory systems in most developing countries cannot support passive surveillance because:
 - Low testing capacity for disease conditions (Lack of equipment, reagents, skilled staff)
 - Unreliable test results (Lack of quality management systems)
 - Weak test reporting systems (Lack of laboratory information management systems)

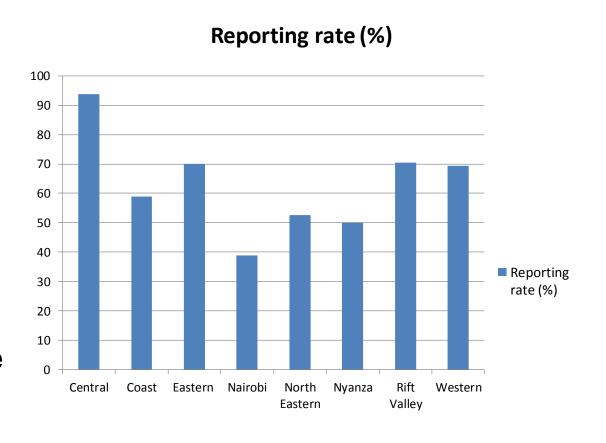
Background (2)

- Kenya Medical Laboratory Policy Guidelines (2006)
 - Strengthen LIMS to provide accurate data for planning
- National Medical Laboratory Strategic Plan (2006 -2010)
 - Ensure each district laboratory submits regular reports
- Laboratory Central Data Unit (CDU) established (2006)
 - Regularly collates national routine clinical laboratory data

Objective:

- Analyze routine clinical laboratory data at CDU to inform:
 - National Disease epidemiology
 - National laboratory testing capacity

Methods

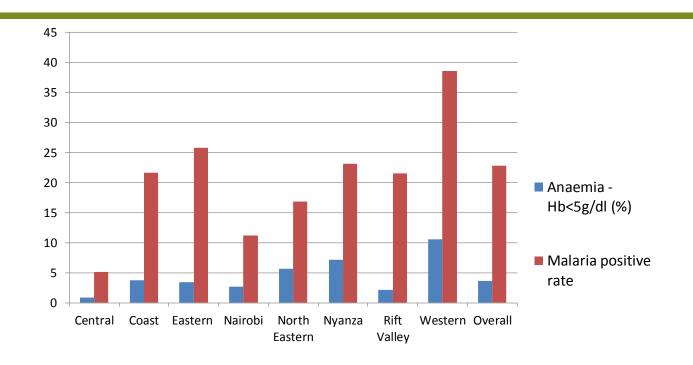


- Reviewed laboratory data from all 172 districts in Kenya
- Data aggregated by the District Medical Laboratory Technologists every quarter and submitted to the CDU
- Data collected comprises:-
 - Source (District/Province)
 - Number and affiliations of facilities reporting
 - Numbers of tests done and outcomes
 - Referral of samples and some QA data
- Data received from July 2010 to June 2011 were analyzed

Reporting rate for all regions (2010-2011)

- Reporting rate ranged from 38.9% to 93.8%
- Median 64.1%
- Region with lowest reporting rate is closest to the CDU

National laboratory workload analysis 2010/2011



- Significant variation in test frequency
- Malaria tests most frequent
- Most infrequently provided tests are bacterial examinations

TEST	NUMBER
Malaria	3,579,894
HIV	1,313,821
Haemoglobin	971,478
Blood glucose	498,299
TB Microscopy	375,926
Blood X-Match	45,744
Bacterial exam	39,341

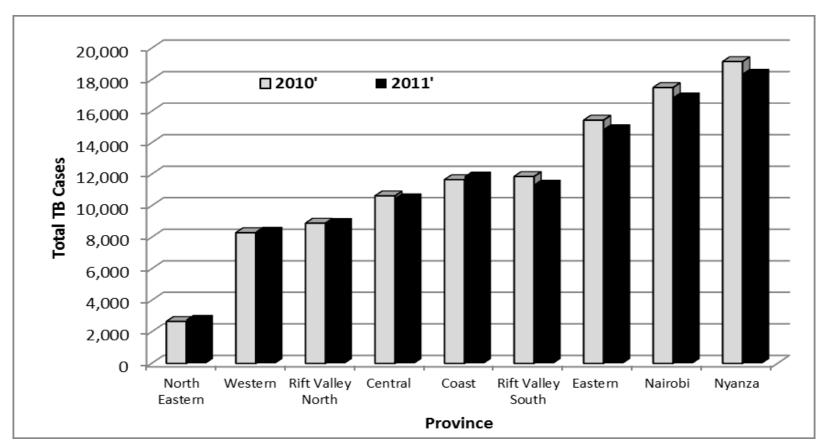
Epidemiology of anaemia and malaria

- Severe anaemia rate ranged from 0.9% in Central to 10.6% in Western
- These regions also had lowest and highest malaria positive rates (5.1% and 38.6% respectively)

Regional mapping of diabetes, TB and HIV

Region	Diabetes (%)	New TB Positivity rate(%)	HIV Positive Rate (%)
Central	2	11.7	5.2
Coast	6.8	8.9	6.1
Eastern	0.5	14.7	3.5
Nairobi	1	13.2	9.6
North Eastern	1.6	9.6	2
Nyanza	3.2	12.8	14.1
Rift Valley	8.6	12.7	3.9
Western	5.9	11.1	4.9
Overall	3.7	12.4	7.4

Discussion



Analysis of routine clinical laboratory data has revealed regional variations in:

- Distribution of disease conditions
 - Severe anaemia
 - HIV
 - New TB cases
 - New Diabetes cases
- National disease statistics from laboratory data corroborates other national reports

Kenya TB case load by province: 2009-2011

Source: DLTLD Annual Report 2011

Discussion

- Analysis showed low laboratory capacity to provide:
 - Microbiology services (39,341) bacterial tests)
 - Blood transfusion services (45,744 GXM)

"For the **essential health services**, the least available services are **laboratory**, imaging and palliative care services" Kenya SARAM 2013 Report

- Weak laboratory services may contribute to
 - Irrational antibiotic use leading to resistance emergence
 - Inability to support acute management of

Limitations and Conclusions

Limitations:

Data Quality – Incomplete data and Accuracy

Conclusions:

- Analysis of routine clinical laboratory data has shown it can be useful for:
 - Disease epidemiology as passive surveillance tool
 - Laboratory management National laboratory services monitoring
- Further strengthening of reporting system with identification of indicators is planned

Acknowledgements

MINISTRY OF HEALTH, KENYA

PEPFAR

CDC

MSH

Stronger health systems. Greater health impact.

Thank you