Evaluation of HIV testing Algorithms in Ethiopia:
The role of the tie-breaker algorithm and weakly reacting test lines in contributing to a high rate of false positive HIV diagnoses.

Leslie Shanks, M. Ruby Siddiqui, Jarmila Kliescikova, Neil Pearce, Cono Ariti, Libsework Muluneh, <u>Erwan Pirou</u>, Koert Ritmeijer, Johnson Masiga, Almaz Abebe

Background

- Well known risk of false positive HIV results using RDT algorithm (choice in RLS)
- Tie-breaker algorithms often used instead of instead of WHO recommended serial or parallel algorithms*
- Evidence for high rate false positives (Ethiopia Amhara/Tigray region) – identified with confirmation using + Immunocomb Combfirm®
- Growing evidence of poor specificity of weakly reactive test lines

Aims

1. Evaluation of HIV RDT algorithm performance in Amhara region of Ethiopia.

- 2.a Assess the positive predictive value (PPV) of weakly reactive test lines;
- 2.b Value of simple confirmation test



Methods

- Two sites: Humera and Abdurafi
- 200 positive samples (and every nth negative to reach 200), from VCT results {WHO nrs}
- Re-tested in laboratory with 3 RDTs (KHB, HIV 1/2 STAT-PAK®, Uni-GoldTM HIV)
- Reference methods: Western Blot (MP Diagnostics HIV Blot 2.2); Indeterminate results resolved by PCR (Cobas TaqMan HIV-1 Qual)

Summary of results

- 2620 subjects included, HIV prevalence 7.7%
- Tiebreaker algorithm (KHB, HIV 1/2 STAT-PAK®, Uni-GoldTM HIV) had 16 false positive results (<u>PPV</u> 92.7%)
- Serial algorithm (KHB, HIV 1/2 STAT-PAK®) had 1 false positive result (PPV 99.5%)
- Adding of ImmunoComb eliminated false positives
- All false positive results had at least one "weakly reactive test line" in the algorithm.

SE, SP, PPV and NPV of algorithms (N=2620)

Algorithm	Results (95% Confidence interval)				
	Sensitivity	Specificity	Positive predictive	Negative predictive	
			value	value	
Serial KHB/STAT-PAK	100%	100%	99.5%(97.3-100)	100% (98.4-100)	
	(98.2-100)	(99.8-100)			
Serial	100%	100%	100%(98.2-100)	100% (98.4-100)	
KHB/STAT-PAK-OIC	(98.2-100)	(98.4-100)			
Tiebreaker	100%	99.3 %	92.7% (88.4-95.8)	100% (98.3-100)	
KHB/STAT-PAK/Unigold	(98.2-100)	(98.9-99.6)			

SE, SP, PPV and NPV of individual RDTs (N=2620)

	Results (95% Confidence interval)				
	Sensitivity	Specificity	Positive predictive	Negative predictive	
			value	value	
КНВ	100% (98.2-	99.1 5(98.6-	89.8% (85.1-93.4)	100% (99.8-100)	
	100)	99.4)			
Unigold	99.0 %(96.5-	99.0% (98.5-	89.3 %(84.5-93.0)	99.9 %(99.7-100)	
	99.9)	99.4)			
STAT-PAK	100% (98.2-	99.9 %(99.7-	98.5 %(95.8-99.7)	99.8 %(99.9-100)	
	100)	100)			

SE, SP, PPV and NPV of algorithms - after excluding weak positives

Algorithm	(95% Confidence interval)				
	Sensitivity	Specificity	Positive	Negative	HIV
			predictive	predictive	prevalence
			value	value	
Serial	100%	100%	100%	100%	7.59%
KHB/STAT-	(98.2-100)	(98.4-100)	(98.2-100)	(98.4-100)	
PAK					
Tiebreaker	100%	100%	100%	100%	7.59%
KHB/STAT-	(98.2-100)	(98.3-100)	(98.2-100)	(98.3-100)	
PAK/Unigold					

Main conclusions

 Unacceptable risk of false positive with tiebreaker

 Weakly reactive test lines have poor specificity/PPV

The confirmation test eliminated all false positive results

Recommendations

- Abandon tie-breaker algorithm in favour of WHO recommended algorithms
- Add confirmation tests to RDT algorithm
- Interpret weak positive RDT results as 'indeterminate'. Operational research is urgently needed on how to implement?

Thank you!

Suppl. 1 Demographics of study participants

		Humera Site	Abdurafi Site	Total
		N(%)	N(%)	N(%)
Number		230	198	428
Age	Mean [range] in years	31.3[10-65]	28.0 [10-67]	29.7 [10-67]
Sex	Male	140 (61.1)	119 (60.1)	259(61.0)
Residentual status	Resident	122 (53.3)	101 (51.0)	223 (52.3)
	Migrant	47 (20.5)	68 (34.3)	115 (26.9)
	Settler	11 (4.8)	19 (9.6)	30 (7.0)
	Other	49 (21.4)	10 (5.1)	59 (13.8)
Reason for testing	Diagnostic testing	65 (28.4)	56 (28.3)	121 (28.3)
	Symptomatic	80 (35.0)	16 (8.1)	96 (22.5)
	Curious about status	8 (3.5)	63 (31.8)	71 (16.6)
	Pre-marriage	15 (6.6)	22 (11.1)	37 (8.7)
	Other	61 (26.6)	41 (20.7)	102 (23.9)

Suppl. 2 Variation of Specificity of HIV test over time and place

PLOS ONE | www.plosone.org

November 2013 | Volume 8 | Issue 11 | e81656

Variation in Specificity of HIV Rapid Diagnostic Tests over Place and Time: An Analysis of Discordancy Data Using a Bayesian Approach

Derryck Klarkowski¹, Kathryn Glass², Daniel O'Brien^{1,3}, Kamalini Lokuge^{1,2}, Erwan Piriou¹, Leslie Shanks^{1*}

1 Médecins sans Frontières, Operational Centre Amsterdam, Amsterdam, The Netherlands, 2 Australian National University, Canberra, Australia, 3 Department of Medicine and Infectious Diseases, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia

