# Pricing Issues for the Procurement of Diagnostics

ASLM 2014
December 1, 2014
Cape Town, South Africa







# Agenda

# **Equipment procurement methodologies**

Other cost considerations

Example

# Diagnostic systems require significant expenditure for lab equipment, commodities and service



### **Capital Expenditure**

- Laboratory infrastructure to house and ensure optimal use of equipment (e.g., air-conditioning, etc.)
- Proprietary laboratory equipment (e.g. DNA amplification instrument)
- Non-proprietary lab equipment (e.g. centrifuges, bio-safety hoods)



**Proprietary Laboratory Items (Reagents and Consumables)** 



Non-Proprietary Laboratory Items (Generic Consumables)



**Sample Collection Materials** 



Service and maintenance, software upgrades and staff training

# There are three general methods of procuring lab equipment

Outright Equipment Purchase

Equipment Lease

Reagent Rental



# Outright Equipment Purchase

1

#### **Terms**

Proprietary equipment is purchased separately from any other item such as reagents and proprietary consumables, service and maintenance, software upgrades, etc.

#### **Pros**

- Ownership of equipment
- More likely to conform with country or donor equipment procurement policies
- More transparent pricing of instrument and additional items

#### Cons

- High upfront capital expenditure
- High administrative costs of managing (signing, monitoring, renewal) separately Service & Maintenance (S&M)
- High risk of service interruptions when S&M contracts are overlooked
- Software upgrades are an additional cost

## **Equipment Lease**

2

#### **Terms**

Proprietary equipment is leased through regular payments over a fixed time period with the option to purchase the equipment at the end of the contract term at an agreed value (usually \$1).

#### **Pros**

- Lower upfront investment
- Service and maintenance included in the terms of the lease

#### Cons

- **No ownership** of equipment
- Higher overall cost of instrument and S&M due to the cost of financing (about 6-8%)



## Reagent Rental

3

#### **Terms**

Vendor supplies the lab equipment, reagents & proprietary lab consumables, training, service and maintenance and software upgrades as part of **one cost per test**, conditional on a testing volume commitment.

#### **Pros**

- Lower upfront investment
- No administrative costs associated with managing separately S&M contracts (S&M included in the price per test)
- Higher flexibility to respond to changes in technology (3-5 year contracts)
- Higher incentive for suppliers to timely service non-functioning equipment

#### Cons

- No ownership of equipment
- Possible higher overall cost per test due to the cost of financing (revenues are postponed)
- Complexity in negotiating a fair price (price premium should reflect expected testing volumes)
- Volume commitment



# Agenda

Equipment procurement methodologies

## Other cost considerations

Example

There is a sweet spot for sites where laboratory based and POC testing make economic sense based on throughput, cost and complexity



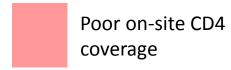
### Actual share of the market will depend on:

#### 1. Country preference

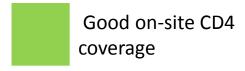
Leverage current laboratory based platforms?

## 2. Price points for device/reagents

Cost of POC test vs laboratory based + sample transport


### 3. Throughput of POC/near-POC

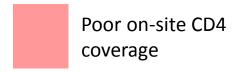
# of machines required to meet patient need vs. burden on health workers


#### 4. Guidelines on DBS

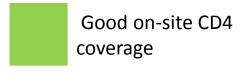
Without DBS, laboratory based may not be able to reach peripheral sites

# Sample: COUNTRY A – LESS DECENTRALIZATION: Most patients seek care at District Hospitals




Medium on-site CD4 coverage



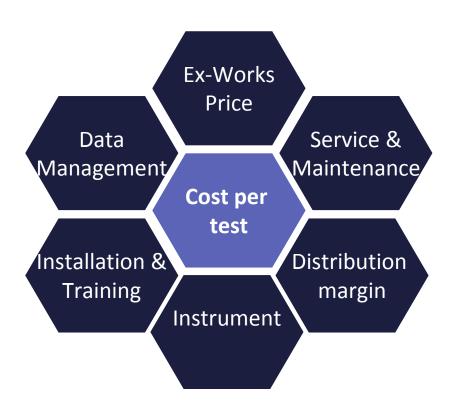

## Market Segmentation by facility level and pre-ART patient population

| Criteria                 | Provincial<br>Hospitals | District<br>Hospitals | Health Centers | TOTAL |
|--------------------------|-------------------------|-----------------------|----------------|-------|
| >20 Patients per Day     | 17%                     | 13%                   | 4%             | 34%   |
| 10-20 Patients per Day   | <1%                     | 17%                   | 8%             | 26%   |
| 5-10 Patients<br>per Day | <1%                     | 11%                   | 5%             | 16%   |
| 0-5 Patients<br>per Day  | 0%                      | 8%                    | 16%            | 24%   |
| TOTAL                    | 18%                     | 49%                   | 33%            | 100%  |

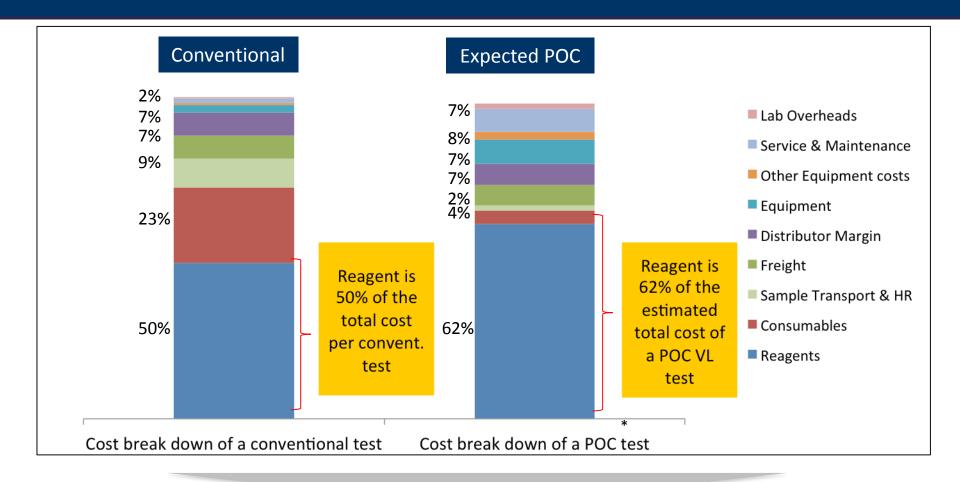
# Sample: COUNTRY B – HIGH DECENTRALIZATION: Most patients seek care at Health Centers



Medium on-site CD4 coverage



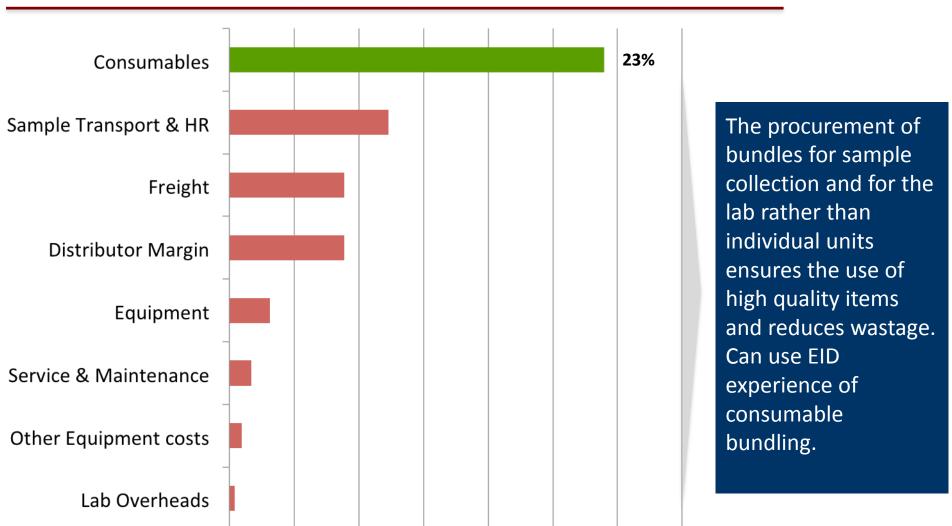

## Market Segmentation by facility level and pre-ART patient population


| Criteria                 | Provincial<br>Hospitals | District<br>Hospitals | Health Centers | TOTAL |
|--------------------------|-------------------------|-----------------------|----------------|-------|
| >20 Patients per Day     | 9%                      | 3%                    | 25%            | 37%   |
| 10-20 Patients per Day   | 3%                      | 9%                    | 11%            | 23%   |
| 5-10 Patients<br>per Day | 0%                      | 6%                    | 8%             | 14%   |
| 0-5 Patients<br>per Day  | 0%                      | 4%                    | 22%            | 26%   |
| TOTAL                    | 12%                     | 22%                   | 66%            | 100%  |

## Beyond the price of reagents and equipment

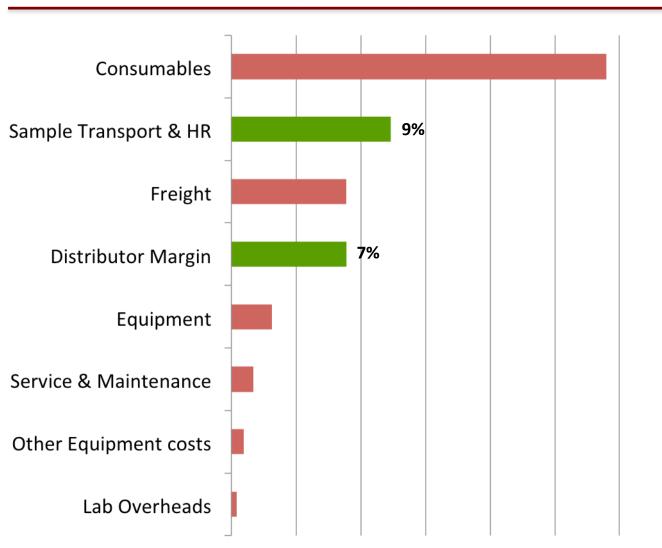
The price of reagents is only one of many components that should be discussed with suppliers during the negotiation phase




# Viral load is impacted by an array of costs



Reagents are but one of many key contributors to cost that must be considered when planning the scale up of viral load


# Consumables are the second highest cost drivers for viral load testing

Conventional VL testing cost components other than reagents -



## VL Cost Breakdown – Sample Transportation and Distributor Margin

Conventional VL testing cost components other than reagents -



Several countries have established sample transportation networks but these are generally underutilized. Sharing costs across tests or diseases can reduce cost per test.

Distribution margin varies highly from country to country and, in some cases, can significantly impact cost per test. More transparency is needed to maintain distribution margins within reasonable ranges.

15

## VL Cost Breakdown – Equipment and Service & Maintenance

Assumptions: VL machines amortize over 8 years

- Conventional VL testing cost components other than reagents -Many countries experience low utilization of DNA PCR Consumables machines which represents an opportunity to leverage Sample Transport & HR existing infrastructure and service (e.g. EID) to Freight jumpstart viral load. Conventional and some Distributor Margin of the planned POC instruments are 2% Equipment multiplex allowing for cost sharing across test and disease areas. Service & Maintenance 1% 1%\* Service and Other Equipment costs maintenance has been a thorn. Community must Lab Overheads include long term

service in planning.

# Agenda

Equipment procurement methodologies

Other cost considerations

# **Example**

# Example: CD4

- "Our initial engagement in (a high-volume country) with reagent rental was for CD4 machines. The contract had the following clauses:
- •Equipment was a reagent rental with volume commitment of \$X.XX per test, inclusive of all consumables (minus controls and stabilised blood controls) and service and maintenance
- •Stipulated volume commitment across 3 years at a guarantee of 72,000 tests annually. If volumes are not met, the contract allows the manufacturer to revise pricing to recuperate the costs incurred during the period of the contract
- •Device belongs to the manufacturer during the period of the contract. In some MoH set ups, the idea of not owing the equipment is not a feasible solution
- •Contract stipulates that the manufacturer will provide free upgrades on the existing equipment, and at the end of the contract there is a possibility to renegotatiate for placement of newer technology if available.
- •Service bundled in the cost of the test which makes equipment downtime the problem of the manufacturer
- This type of contract is advantageous in a high volume country where the volume guarantee is feasible to achieve."

# Conclusions/Thoughts

- Various contexts will require various procurement methodologies.
- Total cost of ownership calculation purchase vs bundled is a must.
  - Highly sensitive to price, volumes. Accurate forecasting imperative
  - May be more expensive to bundle but are advantages worth additional cost?
- Placement and subsequent utilization of equipment can be an important factor.
- Other cost and procurement related issues, including procurement of services, impact total cost.
  - Bundling other products and/or services outside of equipment and reagents only
  - Longer term service contracts standard for all equipment procurement

